Sammanfattning
Background. The first use of magnetic navigation for radiofrequency ablation of supraventricular tachycardias, was published in 2004. Subsequently, the method has been used for treatment of most types of tachyarrhythmias. This paper provides an overview of the method, with special emphasis on usefulness of a new remote-controlled magnetic navigation system.
Material and methods. The paper is based on our own scientific experience and literature identified through a non-systematic search in PubMed.
Results. The magnetic navigation system consists of two external electromagnets (to be placed on opposite sides of the patient), which guide an ablation catheter (with a small magnet at the tip of the catheter) to the target area in the heart. The accuracy of this procedure is higher than that with manual navigation. Personnel can be quickly trained to use remote magnetic navigation, but the procedure itself is time-consuming, particularly for patients with atrial fibrillation. The major advantage is a considerably lower radiation burden to both patient and operator, in some studies more than 50 %, and a corresponding reduction in physical strain on the operator. The incidence of procedure-related complications seems to be lower than that observed with use of manually operated ablation catheters. Work is ongoing to improve magnetic ablation catheters and methods that can simplify mapping procedures and improve efficacy of arrhythmia ablation. The basic cost for installing a complete magnetic navigation laboratory may be three times that of a conventional electrophysiological laboratory.
Interpretation. The new magnetic navigation system has proved to be applicable during ablation for a variety of tachyarrhythmias, but is still under development.